Root multiplicities of hyperbolic Kac–Moody algebras and Fourier coefficients of modular forms

نویسندگان

  • Kyu-Hwan Lee
  • Henry H. Kim
چکیده

In this paper we consider the hyperbolic Kac–Moody algebra F associated with the generalized Cartan matrix ( 2 −2 0 −2 2 −1 0 −1 2 ) . Its connection to Siegel modular forms of genus 2 was first studied by A. Feingold and I. Frenkel. The denominator function of F is not an automorphic form. However, Gritsenko and Nikulin extended F to a generalized Kac–Moody algebra whose denominator function is a Siegel modular form. Using the Borcherds denominator identity, the denominator function can be written as an infinite product. The exponents that appear in the product are given by Fourier coefficients of a weak Jacobi form. P. Niemann also constructed a generalized Kac–Moody algebra which contains F and whose denominator function is related to a product of Dedekind η-functions. In particular, root multiplicities of the generalized Kac–Moody algebra are determined by Fourier coefficients of a modular form. As the main results of this paper, we compute asymptotic formulas for these Fourier coefficients using the method of Hardy–Ramanujan–Rademacher, and obtain an asymptotic bound for root multiplicities of the algebra F . Our method can be applied to other hyperbolic Kac–Moody algebras and to other modular forms as demonstrated in the later part of the paper. H.H. Kim partially supported by an NSERC grant. H.H. Kim Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada e-mail: [email protected] H.H. Kim · K.-H. Lee Korea Institute for Advanced Study, Seoul, Korea K.-H. Lee ( ) Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA e-mail: [email protected] Author's personal copy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Holomorphic Modular Forms and Rank Two Hyperbolic Kac-moody Algebras

In this paper, we compute basis elements of certain spaces of weight 0 weakly holomorphic modular forms and consider the integrality of Fourier coefficients of the modular forms. We use the results to construct automorphic correction of the rank 2 hyperbolic Kac-Moody algebras H(a), a = 4, 5, 6, through Hilbert modular forms explicitly given by Borcherds lifts of the weakly holomorphic modular ...

متن کامل

On Root Multiplicities of Some Hyperbolic Kac-Moody Algebras

Using the coset construction, we compute the root multiplicities at level three for some hyperbolic Kac-Moody algebras including the basic hyperbolic extension of A (1) 1 and E10. Member of the CNRS Laboratoire de la Direction des Sciences de la Matière du Commisariat à l’Energie Atomique.

متن کامل

A combinatorial approach to root multiplicities of rank 2 hyperbolic Kac–Moody algebras

In this paper we study root multiplicities of rank 2 hyperbolic Kac–Moody algebras using the combinatorics of Dyck paths. ARTICLE HISTORY Received 30 November 2016 Revised 19 December 2016 Communicated by K. Misra

متن کامل

Some Generalized Kac-Moody Algebras With Known Root Multiplicities

Starting from Borcherds’ fake monster Lie algebra we construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for...

متن کامل

Almost split real forms for hyperbolic Kac-Moody Lie algebras

A Borel-Tits theory was developped for almost split forms of symmetrizable Kac-Moody Lie algebras [J. of Algebra 171, 43-96 (1995)]. In this paper, we look to almost split real forms for symmetrizable hyperbolic KacMoody Lie algebras and we establish a complete list of these forms, in terms of their Satake-Tits index, for the strictly hyperbolic ones and for those which are obtained as (hyperbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013